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Agents:

» Households

» Final-goods producer

» A continuum of intermediate-goods producers

» Government (fiscal authority)

» Central bank (monetary authority)



Household
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subject to the budget constraint
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C;: Consumption, N: the labor supply, P;: Price of the
consumption good, W; (w;): nominal (real) wage, ®;: Profit share
(dividends) of the household from the intermediate goods
producers, B;: A one-period risk free bond that pays one unit of
money at period t+1, R; !: the price of the bond. T; is a

lump-sum transfer.



Household

In real terms, the household budget constraint is
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Lagrange function:
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Combining the first two equations, we obtain
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where [1; := g™~ Rearranging the third equation, we obtain
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Final-goods producer

The final good producer purchases the intermediate goods Y,
at the intermediate price P;; and aggregates them using CES
technology to produce and sell the final good Y; to the

household and government at price P;:
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Lagrange function:
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Combining these, we obtain
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Combining the equation above with the zero-profit condition
(that'is, P, Y; — fol P; +Y: di = 0), we obtain
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Note that the zero profit condition is implied by perfect
competition.



Dividing by Y%,



Intermediate-goods producers

A continuum of intermediate goods producers indexed by i:
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A¢ is the Lagrange multiplier on the household's budget
constraint at time t and 3t71); is the marginal value of an
additional profit to the household. The positive time zero price

is the same across firms (i.e. Pio = Py > 0).

7 is a production subsidy (later used to make the steady state

“efficient”).

. 2
P.5 [% — 1} Y:: Quadratic price adjustment costs.

‘ 2
Interpretation: ¥ [% — 1] is the proportion of the

aggregate final goods firms would have to purchase if the firm
wants to change its price from yesterday's price.



Lagrange function:
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Combining them, we obtain
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Imposing that (i) the time zero price is the same across firms
(i.e. Pio = Py > 0) and that (ii) prices are the same across
firms for all time t > 0 (P, = P;+ = P;, and thus
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Eventually, we obtain
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Market clearing conditions

The market clearing conditions for the final good, labor and

government bond are given by
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Private-sector equilibrium

Given Py and a policy instrument {R;}°,, an equilibrium
consists of allocations {Cy, N¢, Nit, Yi, Yie}e2,, prices { W,
P:, P;+}22, such that (i) given the determined prices and
policies, allocations solve the problem of the household, (ii)

P; + solves the problem of firm 7, and (iii) all markets clear.
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Government (Fiscal Authority)

The supply of the government bond (B¢) is zero. The market
clearning condition for the bond is given by

The government budget constraint is given by
Pt Tt + Tpt)/t - O (17)

This equilibrium condition only determines T; and does not

affect other parts of the model.



Central Bank

Three cases:

» CB follows an interest-rate feedback rule.

» CB optimizes under commitment (Ramsey policy)

» CB optimizes under discretion (Markov-perfect policy)



Interest-rate feedback rule

FB ollows an interest-rate
eedback rule



Interest-rate feedback rule

Economists often assume that the central bank is following a

particular interest-rate feedback rule.

» Easier to work with.

» Easier to communicate the results with non-experts.



Below is a list of rules that are often considered in policy

debates:
» Taylor rule
» R; = max
» Inertial Taylor

» R; = max
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» Price-level targeting

» R; = max
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» Nominal-income targeting
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Taylor-rule equilibrium
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CB optimizes under
commitment

» a.k.a. “Optimal commitment policy,” “Ramsey policy”



Optimal commitment policy

The optimization problem of the central bank with

commitment at the beginnig of time one is
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subject to the private-sector equilibrium conditions for all
t>1.

» The Ramsey equilibrium is defined as

{C¢, Ye, N, wee, Ty, R 122 that solves this otpimization
problem.

> Note that the central bank optimizes only at the beginning of

time one; it does not optimize each period.



The Lagrange associated with 24 is
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FONCs for t > 2 are given by:
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FONCs for t = 1 are given by:
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CB optimizes under discretion

» a.k.a. “Optimal discretionary policy,” “Markov-perfect
policy”



The time-t Lagrangean is
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